BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 42 2931—2937 (1969)

## Studies on s-Triazines. II. Cotrimerization of Trichloroacetonitrile with Thiocyanates<sup>1),\*1</sup>

## Ko Wakabayashi, Masaru Tsunoda and Yasushi Suzuki

Research Laboratory, Mitsubishi Chemical Industries Ltd., Mizonokuchi, Kawasaki, Kanagawa (Received April 11, 1969)

2-Substituted thio-4,6-bis(trichloromethyl)-s-triazines, a new class of s-triazine derivatives, were obtained by the cotrimerization of CCl<sub>3</sub>CN with a wide variety of thiocyanates. Generally, the reaction proceeded smoothly at ordinary pressure in the presence of hydrogen chloride or the combined catalyst, Friedel-Crafts catalyst-hydrogen chloride.

Literature<sup>2-4)</sup> has revealed that attempts to prepare 2-substituted thio-4,6-bis(trichloromethyl)-striazines have mostly met with failure.

Kober<sup>5)</sup> reported that the reaction of 2,4,6-tris-(trichloromethyl)-s-triazine (I) with alcohols, in the presence of tertiary amines, led to the stepwise replacement of the CCl<sub>3</sub>-groups with the alkoxyl groups, depending upon the reaction condition. Then Kober further attempted to determine whether the reaction of I with alkanethiols, instead of alcohols, would react in the presence of tertiary amines resulting in the formation of 2-alkylthio-4,6-bis(trichloromethyl)-s-triazines. His results, however, indicated that the reaction of I with

Table 1. Isotope abundances for chlorines and sulfur of V

|                    |     |       | P   | P+2 | P+4 | P+6 | P+8 |
|--------------------|-----|-------|-----|-----|-----|-----|-----|
| M+                 | 387 | Calcd | 100 | 196 | 161 | 72  | 18  |
|                    |     | Found | 100 | 203 | 174 | 74  | 21  |
| M+-CH <sub>3</sub> | 372 | Calcd | 100 | 196 | 161 | 72  |     |
|                    |     | Found | 100 | 199 | 150 | 75  |     |
| M+-Cl              | 352 | Calcd | 100 | 164 | 109 | 37  |     |
|                    |     | Found | 100 | 152 | 111 | 46  |     |

Calculation based on <sup>35</sup>Cl: <sup>37</sup>Cl=75.53: 24.47 <sup>32</sup>S: <sup>34</sup>S=95.77: 4.23

<sup>\*1</sup> Taken in part from the dissertation presented by K. Wakabayashi to the University of Tokyo, January 1969.

<sup>1)</sup> Previous paper of this series, K. Wakabayashi, M. Tsunoda and Y. Suzuki, This Bulletin, 42, 2924 (1969).

<sup>2)</sup> E. Kober, J. Org. Chem., 26, 2270 (1961).

<sup>3)</sup> H. G. Schmelzer, G. Dankert, E. Degener and H. Holtschmidt, German Pat. 1200314 (1965); U.S. Pat. 3277091 (1966); Japanese Pat. 3178 (1966).

<sup>4)</sup> H. G. Schmelzer, E. Degener and H. Holtschmidt, Angew. Chem., 78, 982 (1966).

<sup>5)</sup> E. Kober, J. Org. Chem., 25, 1728 (1960).

TABLE 2. COTRIMERIZATION OF

 $CCl_3CN + RSCN \rightarrow$ 

|                                                                                   | Yield | Physical pr  | operty  | UV                                                              | IR*1         | NMR τ*2)                                                                                                       |
|-----------------------------------------------------------------------------------|-------|--------------|---------|-----------------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------|
| R                                                                                 | (%)   | Bp, °C/mmHg  | Mp, °C  | $\lambda_{\max}^{\text{CH}_3\text{OH}} \ \text{m}\mu(\epsilon)$ | cm-1         | (Sol. CDCl <sub>3</sub> )                                                                                      |
| CH <sub>3</sub> *3a,*4                                                            | 93    | 160—165/0.65 | 71—72   | 217 ( 3340)<br>272 (15060)                                      | 1550<br>1498 | 7.27 (s, SCH <sub>3</sub> ) <sup>of.)</sup>                                                                    |
| $C_2H_5^{*3b}$                                                                    | 94    | 170-171/1.0  |         | 221 ( 2850)<br>274 (13530)                                      | 1550<br>1505 | 8.51 (t, 3H, CH <sub>3</sub> ) <sup>ef.)</sup><br>6.68 (q, 2H, SCH <sub>2</sub> )                              |
| n-C <sub>3</sub> H <sub>7</sub>                                                   | 88    | 188—190/2.0  |         | 215 ( 3500)<br>274 (13100)                                      | 1550<br>1503 | 8.88 (t, 3H, CH <sub>3</sub> )<br>8.24 (h, 2H, CH <sub>2</sub> )<br>6.73 (t, 2H, SCH <sub>2</sub> )            |
| i-C <sub>3</sub> H <sub>7</sub>                                                   | 95    | 185—187/4.0  | 58—60   | 215 ( 3600)<br>274 (13840)                                      | 1548<br>1498 | 8.47 (d, 6H, CH <sub>3</sub> )<br>5.88 (m, H, SCH)                                                             |
| n-C <sub>4</sub> H <sub>9</sub>                                                   | 86    | 189—193/3.0  |         | 221 ( 2890)<br>275 (13690)                                      | 1550<br>1503 | 9.00 (t, 3H, CH <sub>3</sub> )<br>7.92—8.73 (m, 4H, CH <sub>2</sub> )<br>6.67 (t, 2H, SCH <sub>2</sub> )       |
| i-C <sub>4</sub> H <sub>9</sub>                                                   | 95    | 180—183/2.0  |         | 220 ( 2960)<br>274 (14250)                                      | 1550<br>1505 | 8.87 (t, 6H, CH <sub>3</sub> )<br>7.67—8.34 (m, H, CH)<br>6.77 (d, 2H, SCH <sub>2</sub> )                      |
| n-C <sub>5</sub> H <sub>11</sub>                                                  | 95    | 192—194/2.0  |         | 221 ( 2890)<br>275 (13690)                                      | 1550<br>1505 | 9.03 (t, 3H, CH <sub>2</sub> )<br>7.98—8.82 (m, 6H, CH <sub>2</sub> )<br>6.68 (t, 2H, SCH <sub>2</sub> )       |
| n-C <sub>6</sub> H <sub>13</sub>                                                  | 90    | 195—200/1.0  |         | 218 ( 2590)<br>275 (14040)                                      | 1548<br>1504 | 9.05 (t, 3H, CH <sub>2</sub> )<br>7.90—8.73 (m, 8H, CH <sub>2</sub> )<br>6.68 (t, 2H, SCH <sub>2</sub> )       |
| n-C <sub>12</sub> H <sub>25</sub> *5                                              | 85    | 230-235/0.2  |         | 214 ( 2670)<br>274 (13490)                                      | 1542<br>1504 | 9.12 (t, 3H, CH <sub>2</sub> )<br>8.04—8.96 (m, 20H, CH <sub>2</sub> )<br>6.93 (t, 2H, SCH <sub>2</sub> )      |
| CH₂*3c                                                                            | 72    | 186—189/1.0  | 84—85   | 231 (2420)<br>277 (13780)                                       | 1543<br>1504 | 5.43 (s, 2H, CH <sub>2</sub> )<br>2.35-2.70 (m, 5H, Aro.)                                                      |
| Cl-                                                                               | 68    |              | 9193    | 232 ( 3600)<br>279 (15200)                                      | 1542         |                                                                                                                |
| $NO_2$ - $\left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$ - $CH_2$ | 74    |              | 121—122 | 295 (20400)                                                     | 1535         |                                                                                                                |
|                                                                                   | 95    | 210-214/2.0  | 65—67   | 271 ( 9710)                                                     | 1537<br>1504 | 2.20-2.60 (m, 5H, Aro.)                                                                                        |
| $c \stackrel{d}{\underset{b}{=}} CH_3$                                            | 95    | 185—187/1.0  | 47—48   | 270 ( 9680)                                                     | 1532<br>1503 | 7.56 (s, 3H, CH <sub>3</sub> )<br>2.50-2.70 (m, 3H, b+c+d)<br>2.41 (d, H, a)                                   |
| CH <sub>3</sub> d<br>c a                                                          | 93    |              | 74—75   | 270 ( 9720)                                                     | 1545<br>1504 | 7.55 (s, 3H, CH <sub>3</sub> )<br>2.69 (m, 2H, b+c)<br>2.41 (m, 2H, a+d)                                       |
| CH3                                                                               | 95    |              | 8285    | 269 (10240)                                                     | 1546<br>1504 | 7.53 (s, 3H, CH <sub>3</sub> )<br>2.74 (d, 2H, b)<br>2.42 (d, 2H, a)                                           |
| coCH <sub>3</sub>                                                                 | 83    |              | 98—101  | 272 (11020)                                                     | 1542<br>1508 | 6.18 (s, 3H, CH <sub>3</sub> )<br>2.50-3.10 (m, 3H, b+c+d)<br>2.40 (d, H, a)                                   |
| CH <sub>3</sub> O - b a                                                           | 86    |              | 100—103 | 271 (11000)                                                     | 1545<br>1508 | 6.23 (s, 3H, CH <sub>3</sub> )<br>3.13 (d, 2H, b)<br>2.61 (d, 2H, a)                                           |
| c OCH2CH3                                                                         | 88    |              | 45—48   | 213 (19000)<br>282 (9030)                                       | 1534<br>1504 | 8.56 (t, 3H, CH <sub>3</sub> )<br>5.84 (q, 2H, CH <sub>2</sub> )<br>2.60-3.10 (m, 3H, b+c+d)<br>2.45 (d, H, a) |

October, 1969]

2933

CCl<sub>3</sub>CN with thiogyanates

SR N N CCl<sub>3</sub> N CCl<sub>3</sub>

| Method |         | Molecular                                               |                | Anal., %              |                         |                |                |                |  |
|--------|---------|---------------------------------------------------------|----------------|-----------------------|-------------------------|----------------|----------------|----------------|--|
| A or B | Solvent | formula                                                 |                | C                     | Н                       | N              | s              | Cl             |  |
| A      |         | $C_6H_3N_3SCl_6$                                        | Calcd<br>Found | 19.91<br>19.86        | 0.83<br>0.91            | 11.61<br>11.35 | 8.86<br>8.88   | 58.78<br>58.58 |  |
| A      |         | $\mathrm{C_7H_5N_3SCl_6}$                               | Calcd<br>Found | $\frac{22.37}{22.52}$ | 1.34<br>1.38            | 11.18<br>11.10 | $8.53 \\ 8.63$ | 56.59<br>56.61 |  |
| A      |         | $\mathrm{C_8H_7N_3SCl_6}$                               | Calcd<br>Found | 24.64<br>24.69        | 1.81<br>1.85            | 10.78<br>10.76 | 8.22<br>8.07   | 54.55<br>54.65 |  |
| A      |         | $\mathrm{C_8H_7N_3SCl_6}$                               | Calcd<br>Found | 24.64<br>24.51        | 1.81<br>1.88            | 10.78<br>10.51 | 8.22<br>7.90   | 54.55<br>54.98 |  |
| A      |         | $C_9H_9N_3SCl_6$                                        | Calcd<br>Found | 26.76<br>26.66        | 2.25<br>2.24            | 10.40<br>10.29 | 7.94<br>8.02   | 52.66<br>52.81 |  |
| A      |         | $\mathrm{C_9H_9N_3SCl_6}$                               | Calcd<br>Found | 26.76<br>26.85        | 2.25<br>2.35            | 10.40<br>10.16 | 7.94<br>8.06   | 52.66<br>52.77 |  |
| A      |         | $\mathrm{C_{10}H_{11}N_3SCl_6}$                         | Calcd<br>Found | 28.73<br>28.86        | 2.65<br>2.62            | 10.05<br>9.83  | 7.67<br>7.55   | 50.89<br>50.93 |  |
| Α      | Ether   | $\mathrm{C_{11}H_{13}N_3SCl_6}$                         | Calcd<br>Found | 30.58<br>30.72        | 3.03<br>3.11            | 9.73<br>9.67   | 7.42<br>7.50   | 49.24<br>49.40 |  |
| A      | Ether   | $\mathrm{C_{17}H_{25}N_3SCl_6}$                         | Calcd<br>Found | 39.55<br>39.41        | 4.88<br>5.02            | 8.14<br>8.33   | 6.21<br>6.29   | 41.21<br>41.32 |  |
| A      | Ether   | $\mathrm{C_{12}H_7N_3SCl_6}$                            | Calcd<br>Found | 32.91<br>32.68        | 1.61<br>1.86            | $9.59 \\ 9.48$ | 7.32<br>7.35   | 48.57<br>48.81 |  |
| В      | Ether   | $\mathrm{C_{12}H_6N_3SCl_7}$                            | Calcd<br>Found | $\frac{30.51}{30.62}$ | $\substack{1.28\\1.43}$ | 8.89<br>9.02   | 6.79<br>6.65   | 52.53<br>52.48 |  |
| В      | Ether   | $\mathrm{C_{12}H_6N_4O_2SCl_6}$                         | Calcd<br>Found | 29.84<br>30.01        | 1.25<br>1.36            | 11.60<br>11.45 | 6.64<br>6.55   | 44.04<br>44.12 |  |
| Α      | Ether   | $\mathrm{C}_{11}\mathrm{H}_5\mathrm{N}_3\mathrm{SCl}_6$ | Calcd<br>Found | 31.16<br>31.38        | 1.19<br>1.41            | 9.91<br>9.73   | 7.56<br>7.48   | 50.17<br>49.97 |  |
| Α      | Ether   | $C_{12}H_7N_3SCl_6$                                     | Calcd<br>Found | 32.91<br>32.88        | 1.61<br>1.81            | 9.59<br>9.63   | 7.32<br>7.53   | 48.57<br>48.67 |  |
| В      | Ether   | $\mathrm{C_{12}H_{7}N_{3}SCl_{6}}$                      | Calcd<br>Found | 32.91<br>32.76        | 1.61<br>1.58            | 9.59<br>9.72   | 7.32<br>7.47   | 48.57<br>48.49 |  |
| В      | Ether   | $\mathrm{C_{12}H_7N_3SCl_6}$                            | Calcd<br>Found | 32.91<br>33.19        | 1.61<br>1.77            | 9.59<br>9.31   | 7.32<br>7.31   | 48.57<br>48.66 |  |
| В      | Ether   | $\mathrm{C_{12}H_{7}N_{3}OSCl_{6}}$                     | Calcd<br>Found | 31.75<br>31.70        | 1.55<br>1.44            | 9.26<br>9.06   | 7.06<br>7.24   | 46.86<br>46.51 |  |
| В      | Ether   | $\mathrm{C_{12}H_{7}N_{3}OSCl_{6}}$                     | Calcd<br>Found | 31.75<br>31.65        | 1.55<br>1.61            | 9.26<br>9.33   | 7.06<br>7.16   | 46.86<br>46.53 |  |
| В      | Ether   | $\mathrm{C_{13}H_{9}N_{3}OSCl_{6}}$                     | Calcd<br>Found | 33.36<br>33.55        | 1.94<br>2.02            | 8.98<br>9.11   | 6.85<br>6.79   | 45.45<br>45.51 |  |

TABLE 2.

|                                     | Yield | Physical property |        | UV                                                                | IR*1         | NMR τ*2                                                                                                |  |  |
|-------------------------------------|-------|-------------------|--------|-------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------|--|--|
| R                                   | (%)   | Bp, °C/mmHg       | Mp, °C | $\lambda_{\max}^{\text{CH}_3\text{OH}} \text{ m}\mu(\varepsilon)$ | cm-1         | (Sol. CDCl <sub>3</sub> )                                                                              |  |  |
| CH <sub>3</sub> CH <sub>2</sub> O-  | _ 81  |                   | 54—56  | 212 (15190)<br>283 (11830)                                        | 1542<br>1503 | 8.55 (t, 3H, CH <sub>3</sub> )<br>5.92 (q, 2H, CH <sub>2</sub> )<br>3.02 (d, 2H, b)<br>2.47 (d, 2H, a) |  |  |
| <                                   | 92    |                   | 5860   | 210 (15680)<br>270 (10150)                                        | 1532<br>1510 | 2.18—2.80 (m, 4H, Aro.)                                                                                |  |  |
| da_b                                | 93    |                   | 57—58  | 213 (17780)<br>270 (10910)                                        | 1540<br>1510 | 2.50 (m, 3H, b+c+d)<br>2.27 (s, H, a)                                                                  |  |  |
| Cl-                                 | 95    | 224—226/1.0       | 68—70  | 210 (19070)<br>268 (10900)                                        | 1548<br>1504 | 2.46 (d, 4H, a+b)                                                                                      |  |  |
| Cl-Cl                               | 86    | 230—240/2.0       | 68—70  | 213 (21090)<br>267 13090)                                         | 1545<br>1512 | 2.55 (d, H, c)<br>2.36 (d, H, b)<br>2.23 (s, H, a)                                                     |  |  |
| Cl-Cl-ab-                           | 90    | 245—248/2.0       | 85—87  | 212 (23840)<br>271 ( 9170)                                        | 1540<br>1512 | 2.47 (d, 2H, b+c)<br>2.18 (s, H, a)                                                                    |  |  |
| Cl-Cl Cl                            | 83    |                   | 97—99  | 213 (23730)<br>266 ( 7070)                                        | 1538<br>1516 | 2.29 (s, H, b)<br>2.14 (s, H, a)                                                                       |  |  |
| Br                                  | 83    |                   | 60—62  | 215 (17500)<br>270 (10650)                                        | 1540<br>1510 |                                                                                                        |  |  |
| Cl- a _ b                           | 87    |                   | 75—76  | 270 (10770)                                                       | 1540<br>1508 | 7.58 (s, 3H, CH <sub>3</sub> )<br>2.52 (m, 2H, b+c)<br>2.45 (d H, a)                                   |  |  |
| $NO_2$ - $\langle - \rangle$ -      | 61    |                   | 93—95  | 288 (16320)                                                       | 1520         | 2.30 (d, 2H, b)<br>1.66 (d, 2H, a)                                                                     |  |  |
| NO <sub>2</sub> a CI-               | 83    |                   | 65—66  | 263 (11080)                                                       | 1540<br>1512 | 2.25 (d, 2H, b+c)<br>1.75 (s, H, a)                                                                    |  |  |
| NO <sub>2</sub> -& OCH <sub>3</sub> | 64    |                   | 65—67  | 286 ( 9980)                                                       | 1526         | 5.93 (s, 3H, CH <sub>3</sub> )<br>2.20 (m, 2H, b+c)<br>2.08 (d, H, a)                                  |  |  |

<sup>\*1</sup> Characteristic absorption of s-triazine system.

<sup>\*2</sup> s, singlet; d, doublet; t, triplet; q, quartet; qi, quintet; h, heptet; m, multiplet. \*3 H. G. Schmelzer et al., U. S. Pat. 3347859 (1967) a) mp 63°C; b) bp 154—157°C/0.4 mmHg; c) mp 83-84°C; d) mp 68-70°C.

<sup>\*4</sup> H. G. Schmelzer et al., German Pat. 1200314 (1965).

<sup>\*5</sup>  $n_D^{28}$  1.5710

Continued

| Me     | thod    | Molecular                        |                | Anal., %       |              |                |              |                              |  |
|--------|---------|----------------------------------|----------------|----------------|--------------|----------------|--------------|------------------------------|--|
| A or B | Solvent | formula                          |                | C              | Н            | N              | s            | Cì                           |  |
| В      | Ether   | $C_{13}H_9N_3OSCl_6$             | Calcd<br>Found | 33.36<br>33.41 | 1.94<br>2.04 | 8.98<br>8.90   | 6.85<br>6.72 | 45.45<br>45.25               |  |
| В      | Ether   | $C_{11}H_4N_3SCl_7$              | Calcd<br>Found | 28.82<br>28.61 | 0.88<br>0.92 | 9.17<br>8.99   | 7.00<br>6.97 | 54.14<br>54.25               |  |
| В      | Ether   | $\mathrm{C_{11}H_4N_3SCl_7}$     | Calcd<br>Found | 28.82<br>29.03 | 0.88<br>0.93 | 9.17<br>8.97   | 7.00<br>7.09 | 54.14<br>53.92               |  |
| A      | Ether   | $C_{11}H_4N_3SCl_7$              | Calcd<br>Found | 28.82<br>28.96 | 0.88<br>0.92 | 9.17<br>9.06   | 7.00<br>7.01 | 54.14<br>53.96               |  |
| Α      | Ether   | $\mathrm{C_{11}H_3N_3SCl_8}$     | Calcd<br>Found | 26.81<br>26.66 | 0.61<br>0.63 | 8.53<br>8.44   | 6.51<br>6.41 | 57.55<br>57.31               |  |
| Α      | Ether   | $C_{11}H_3N_3SCl_8$              | Calcd<br>Found | 26.81<br>26.82 | 0.61<br>0.73 | 8.53<br>8.31   | 6.51<br>6.27 | 57.55<br>57.65               |  |
| В      | Ether   | $\mathrm{C_{11}H_2N_3SCl_9}$     | Calcd<br>Found | 25.05<br>25.37 | 0.38<br>0.63 | 7.97<br>8.05   | 6.08<br>5.83 | 60.51<br>60.73               |  |
| В      | Ether   | $C_{11}H_4N_3SBrCl_6$            | Calcd<br>Found | 26.27<br>26.34 | 0.80<br>0.96 | 8.36<br>8.45   | 6.38<br>6.43 | 58.19* <sup>6</sup><br>58.24 |  |
| В      | Ether   | $C_{12}H_6N_3SCl_7$              | Calcd<br>Found | 30.51<br>30.69 | 1.28<br>1.40 | 8.89<br>8.69   | 6.79<br>6.66 | 52.53<br>52.47               |  |
| В      | Ether   | $\mathrm{C_{11}H_4N_4O_2SCl_6}$  | Calcd<br>Found | 28.17<br>28.34 | 0.86<br>1.01 | 11.95<br>12.13 | 6.84<br>6.76 | 45.36<br>45.51               |  |
| В      | Ether   | $\mathrm{C_{1_1}H_3N_4O_2SCl_7}$ | Calcd<br>Found | 26.24<br>26.35 | 0.60<br>0.81 | 11.13<br>10.85 | 6.37<br>6.34 | 49.30<br>49.19               |  |
| В      | Ether   | $\mathrm{C_{12}H_6N_4O_3SCl_6}$  | Calcd<br>Found | 28.88<br>29.01 | 1.21<br>1.45 | 11.23<br>11.36 | 6.43<br>6.53 | 42.63<br>42.55               |  |

<sup>\*6</sup> Calcd value: Cl+Br

OR N N CCl<sub>3</sub> N CCl<sub>3</sub>

 $R = CH_3CH_2^ \tau$ : 8.44 (t, 3H,  $CH_3$ ); 5.26 (q, 2H,  $CH_2$ )

R=CH<sub>3</sub>-  $\tau$ : 5.72 (s, 3H, CH<sub>3</sub>)

cf. NMR (CDCl<sub>3</sub>)

alkanethiols in the presence of tertiary amines took an entirely different course as compared with the reaction of I with alcohols. Instead of being replaced with the alkylthio groups, the CCl<sub>3</sub>-groups were converted into CHCl<sub>2</sub>-groups and resulted in 2,4,6-tris(dichloromethyl)-s-triazine (II).<sup>2)</sup>

Scheme 1

The only type of these s-triazines hitherto known, is 2-methylthio-4,6-bis(trichloromethyl)-s-triazine<sup>3)</sup> (III) which was obtained from the reaction of S-methyl isothiourea with N-pentachloroethyltrichloroacetimidoyl chloride (IV). The following Scheme 2 shows this method to be successful.

$$\begin{array}{c} \text{CH}_3\text{S} \cdot \text{C} \stackrel{\text{NH}}{\nearrow} + \text{CCl}_3 \cdot \text{CCl}_2 \cdot \text{N} = \text{CCl} \cdot \text{CCl}_3 \rightarrow \\ \text{SCH}_3 & & & & & & & & \\ \text{NN} \stackrel{\text{N}}{\nearrow} \text{N} & + & & & & & \\ \text{CCl}_3 \stackrel{\text{N}}{\nearrow} \text{N} \stackrel{\text{CCl}_3}{\nearrow} \text{CCl}_3 & & & & & \\ & & & & & & & & & \\ \text{(III)} & & & & & & & & \\ \end{array}$$

Scheme 2

While the S-methyl isothiourea is derived readily from thiourea,  $^{6}$  IV has been only obtained by high temperature (250–300°C) chlorination reaction of ( $C_2H_5$ )<sub>2</sub>NH<sup>7</sup>) or of N-ethyl-trichloroacetimidoyl chloride<sup>8</sup>) under UV irradiation. Many side reactions may occur, if the reaction is not carried out carefully in this chlorination process. Because of such conditions, the method mentioned above is not readily applicable to the preparation of the desired compounds.

The authors have also investigated the preparation of 2-substituted thio-4,6-bis(trichloromethyl)-s-triazines, in order to evaluate these s-triazines as fungicides<sup>9)</sup> or nitrification inhibitors<sup>10)</sup> in soil. Accordingly, the extention of the cotrimerization reaction<sup>1)</sup> of CCl<sub>3</sub>CN with other nitriles to that of CCl<sub>3</sub>CN with RSCN, have been examined as a method in the preparation of these types of s-triazines. The results show that 2-substituted thio-4,6-bis(trichloromethyl)-s-triazines can be prepared in high yield by a less costly and moderate reaction condition involving the simple cotrimerization of CCl<sub>3</sub>CN with RSCN at atmospheric pressure.

$$2CCl_3 \cdot CN + RSCN \rightarrow N N N CCl_3 N CCl_3 N CCl_3 R = n \cdot C_3 H_7 (V)$$
Scheme 3

Cotrimerization reaction was done by introducing HCl gas into the mixture of 2 mol of CCl<sub>3</sub>CN and 1 mol of RSCN and a small amount of Friedel-Crafts catalyst.<sup>11)</sup> The strong heating treatment was

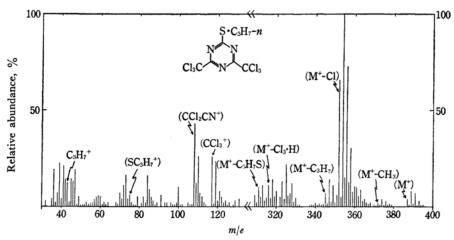



Fig. 1. Mass spectrum of V.

Motojima and M. Tsuda, Japanese Appl. 67973 (1968). 10) M. Okuzu, K. Wakabayashi, M. Tsunoda, S. Fujita and M. Tsuda, Japanese Appl. 86933 (1968). 11) H. G. Schmelzer and E. Degener, U. S. Pat. 3347859 (1967).

We came across this patent a few days after we carried out our experiment. ZnCl<sub>2</sub>-HCl is used in the patented reaction instead of our combined catalyst, AlBr<sub>3</sub>-HCl.

<sup>6)</sup> P. R. Shildneck and Wallace Windus, "Organic Syntheses," Coll. Vol. II, p. 411 (1943).

<sup>7)</sup> W. Zecher, H. Tarnow and H. Holtschmidt, German Pat. 1222918 (1966); Netherland Appl. 6516622 (1966).

<sup>8)</sup> H. Holtschmidt, E. Degener and H. G. Schmelzer, Liebigs Ann. Chem., 701, 107 (1967).

<sup>9)</sup> K. Matsui, H. Kasugai, K. Wakabayashi, S.

necessary to cotrimerize completely CCl<sub>3</sub>CN with RSCN as well as the cotrimerization of CCl<sub>3</sub>CN with aliphatic nitriles.<sup>1)</sup> The reaction time was shortened by using Friedel-Crafts catalyst, which was not necessarily required to achieve this reaction.

In several cases the authors did not use solvents. When RSCN was not dissolved completely in CCl<sub>3</sub>CN, suitable solvents such as ether, chloroform, carbon tetrachloride, *etc.*, could be used.

The following information shows that the product from CCl<sub>3</sub>CN and n-C<sub>3</sub>H<sub>7</sub>SCN was to be a 2:1 cotrimer of them. The product has a strong infrared absorption at 1550 and 1503 cm<sup>-1</sup> (s-triazine ring). Figure 1 shows the result of mass spectrum analysis.

As shown in Fig. 1, the molecular peak  $(M^+)$ , m/e 387, corresponds to the calculated molecular weight of 2-(n-propylthio)-4,6-bis(trichloromethyl) -s-triazine (V). m/e 352 and 317 register the exact weight of  $M^+-35$ (atomic weight of chlorine) and  $M^+-2\times35$ , respectively. Also as shown in Table 1, the isotope abundances are the same as those calculated, and the NMR spectrum of the product shows the existence of the n-C<sub>3</sub>H<sub>2</sub> group.

Judging from these results, we can state that the product from CCl<sub>3</sub>CN and n-C<sub>3</sub>H<sub>7</sub>SCN is the 2:1 cotrimer of them, V.

Table 2 shows 2-substituted thio-4,6-bis(trichloromethyl)-s-triazines obtained from the cotrimerization of CCl<sub>3</sub>CN with RSCN.

The authors also attempted Kober's methods,<sup>2)</sup> making I react with methanethiol in the presence of (C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>N, but could not obtain the desired III.

II and 2,4-bis(dichloromethyl)-6-bis(methylthio)-methyl-s-triazine were confirmed by IR and NMR to be the products in this reaction.

## Experimental

All boiling points and melting points are uncorrected. IR spectra were obtained with a JASCO model IR-S spectrometer. UV spectra were obtained with a Perkin-Elmer model 202 spectrometer. NMR spectra were determined at 60 Mc with a Varian A-60 spectrometer using TMS as the internal standard. Mass spectra were obtained with a Hitachi RMU-6C spectrometer.

Procedure of the Method. 2-Substituted Thio-4,6bis(trichloromethyl)-s-triazine. 290 g (2 mol) of CCl<sub>3</sub>CN and thiocyanate\*2 (1 mol) and 3 g of AlBr3 were placed in a 500 ml flask (if necessary, the solvent should be added). Anhydrous hydrogen chloride (ca. 150 g) was introduced into the mixed solution at -40-20°C with stirring. The reaction mixture was kept at -10-0°C for 12 hr and then at room temperature for the next 24 hr. Hydrogen chloride gas was then removed under reduced pressure (20-30 mmHg) by use of a water pump from the reaction mixture, gradually heating it to 150-200°C to complete cotrimerization. The residue was fractionated under reduced pressure (Method A) or recrystallized from ethyl acetate (Method B). 2-Substituted thio-4,6-bis(trichloromethyl)-s-triazines obtained were shown in Table 2.

2,4,6-Tris(dichloromethyl)-s-triazine<sup>2)</sup> (II). To the mixed solution of 21 g (0.2 mol) of  $(C_2H_5)_3N$  and 96 g (2 mol) of CH<sub>3</sub>SH was added 43.3 g (0.1 mol) of 2,4,6-tris-(trichloromethyl)-s-triazine by small portion at -20- $-30^{\circ}$ C with stirring. After adding, 200 ml of ether was added to this solution and the excess CH3SH was removed below room temperature. The separated (C2H5)3N-HCl salt was filtered and the filtrate was concentrated to remove ether and CH3SSCH3. The resulting oily residue was fractionated to give 24.7 g (75% yield) of 2,4,6-tris(dichloromethyl)-s-triazine, bp 150-60°C/0.5 mmHg, mp 62-65°C. Recrystallization from petroleum ether raised the melting point to 67—70°C. Found: C, 21.95; H, 1.03; N, 12.66; Cl, 64.52%. Calcd for C<sub>6</sub>H<sub>3</sub>N<sub>3</sub>Cl<sub>6</sub>: C, 21.84; H, 0.92; N, 12.74; Cl, 64.49%. IR absorption (KBr): 1552 cm<sup>-1</sup> (characteristic absorption of s-triazine system). NMR spectrum (CDCl<sub>3</sub>): τ 3.27 (singlet, CHCl<sub>2</sub>).

2,4-Bis(dichloromethyl)-6-bis (methylthio) methyl-s-triazine. Using 50 g (0.5 mol) of  $(C_2H_5)_3N$  and 96 g (2 mol) of  $CH_3SH$  and 43.3 g (0.1 mol) of 2,4,6-tris(trichloromethyl)-s-triazine, the reaction was carried out in the same way as in the preparation of II. The major product, 23 g (65% yield), bp 125—128°C/0.01 mmHg,  $n_D^{23}$  1.5572, was 2,4-bis(dichloromethyl)-6-bis(methyl-thio)methyl-s-triazine.

Found: C, 27.35; H, 2.46; N, 12.01; Cl, 39.96; S, 18.34%. Calcd for  $C_8H_9N_3Cl_4S_2$ : C, 27.21; H, 2.57; N, 11.90; Cl, 40.16; S, 18.16%.

IR absorption (Film): 1548 cm<sup>-1</sup> (characteristic absorption of s-triazine system).

NMR spectrum (CDCl<sub>3</sub>):  $\tau$  7.73 (singlet, 6H, SCH<sub>3</sub>); 6.12 (singlet, H, -CH $\langle {}_{S}^{S} \rangle$ ; 3.35 (singlet, 2H, CHCl<sub>2</sub>).

The authors are indebted to the Mitsubishi Chemical Industries Ltd. for their generous support of this work. They also wish to thank Mr. Y. Takigawa for kindly assisting in interpreting the spectra. Valuable technical assistance was also provided by Mr. M. Tsuda and Mr. M. Nakazawa.

<sup>\*2</sup> Materials. Alkyl thiocyanates were prepared from KSCN and the corresponding alkyl halides and aryl thiocyanates from the corresponding anilines.